

Daily Tutorial Sheet-15

Level-3

159.(A)

$$3O_2 \xrightarrow{\text{electric spark}} 2O_3$$

Initial

Final
$$(1-x)L$$
 $\frac{2}{3}xI$

$$1-x+\frac{2}{3}x=0.8 \quad \Rightarrow \quad 1-\frac{1}{3}x=0.8 \quad \Rightarrow \quad 0.2\times 3=x \quad \Rightarrow \quad 0.6=x$$

Mole fraction of ozone
$$=$$
 $\frac{\frac{2}{3}x}{1-\frac{1}{3}x} = \frac{\frac{2}{3} \times 0.6}{1-\left(\frac{1}{3} \times 0.6\right)} = \frac{0.4}{0.8} = 0.5$

160.(B) On treatment with turpentine oil, ozone gets absorbed by it.

 \therefore Volume of ozone in $100 \,\text{mL} = 60 \,\text{mL}$

Volume of oxygen in $100 \, \text{mL} = 40 \, \text{mL}$

On heating, $2O_3(g) \longrightarrow 3O_2(g)$

60 mL of ozone will give $\frac{3}{2} \times 60 = 90$ mL of O_2

∴ Total volume of oxygen = 130 mL

Increase in volume = 130 - 100 = 30 mL

161.(A) Let there be x mL of NH_3 in the mixture

 \therefore Volume of H₂ in the mixture = (50 - x) mL

$$2NH_3 \xrightarrow{\text{electric}} N_2 + 3H_2$$

x mL will be give $\frac{x}{2}$ mL N₂ and $\frac{3}{2}$ x mL H₂

Total volume of $H_2 = \frac{3}{2}x + 50 - x = 50 + \frac{x}{2}$

When 40 mL of oxygen was added and the mixture was sparked again, volume of O_2 used = (40-6)mL = 34 mL

$$2H_2 + O_2 \longrightarrow 2H_2O$$

 $34~\mathrm{mL}$ O_2 will react with $68~\mathrm{mL}$ H_2

$$\therefore 50 + \frac{x}{2} = 68 \implies x = 36$$

% of
$$\frac{36}{50} \times 100 = 72\%$$

- **162.(A)** Real gases show negative deviation (Z < 1) from ideal behaviour due to the intermolecular attractive forces.
- **163.(B)** On increasing the temperature, the distribution curve flattens and the peak of the curve decreases.
- **164.(D)** Dalton's law of partial pressures is valid only in case of a mixture of un-reacting gases.